Sciweavers

Share
502 search results - page 1 / 101
» Principal Component Analysis for Sparse High-Dimensional Dat...
Sort
View
ICONIP
2007
10 years 2 months ago
Principal Component Analysis for Sparse High-Dimensional Data
Abstract. Principal component analysis (PCA) is a widely used technique for data analysis and dimensionality reduction. Eigenvalue decomposition is the standard algorithm for solvi...
Tapani Raiko, Alexander Ilin, Juha Karhunen
SGAI
2005
Springer
10 years 6 months ago
The Effect of Principal Component Analysis on Machine Learning Accuracy with High Dimensional Spectral Data
This paper presents the results of an investigation into the use of machine learning methods for the identification of narcotics from Raman spectra. The classification of spectr...
Tom Howley, Michael G. Madden, Marie-Louise O'Conn...
COLT
2010
Springer
9 years 11 months ago
Principal Component Analysis with Contaminated Data: The High Dimensional Case
We consider the dimensionality-reduction problem (finding a subspace approximation of observed data) for contaminated data in the high dimensional regime, where the number of obse...
Huan Xu, Constantine Caramanis, Shie Mannor
JMLR
2010
144views more  JMLR 2010»
9 years 8 months ago
Practical Approaches to Principal Component Analysis in the Presence of Missing Values
Principal component analysis (PCA) is a classical data analysis technique that finds linear transformations of data that retain the maximal amount of variance. We study a case whe...
Alexander Ilin, Tapani Raiko
ECML
2007
Springer
10 years 7 months ago
Principal Component Analysis for Large Scale Problems with Lots of Missing Values
Abstract. Principal component analysis (PCA) is a well-known classical data analysis technique. There are a number of algorithms for solving the problem, some scaling better than o...
Tapani Raiko, Alexander Ilin, Juha Karhunen
books