Sciweavers

Share
148 search results - page 1 / 30
» Riemannian Manifold Learning for Nonlinear Dimensionality Re...
Sort
View
ECCV
2006
Springer
12 years 11 months ago
Riemannian Manifold Learning for Nonlinear Dimensionality Reduction
In recent years, nonlinear dimensionality reduction (NLDR) techniques have attracted much attention in visual perception and many other areas of science. We propose an efficient al...
Tony Lin, Hongbin Zha, Sang Uk Lee
CVPR
2008
IEEE
12 years 11 months ago
Clustering and dimensionality reduction on Riemannian manifolds
We propose a novel algorithm for clustering data sampled from multiple submanifolds of a Riemannian manifold. First, we learn a representation of the data using generalizations of...
Alvina Goh, René Vidal
TSMC
2010
11 years 4 months ago
Distance Approximating Dimension Reduction of Riemannian Manifolds
We study the problem of projecting high-dimensional tensor data on an unspecified Riemannian manifold onto some lower dimensional subspace1 without much distorting the pairwise geo...
Changyou Chen, Junping Zhang, Rudolf Fleischer
PAMI
2008
391views more  PAMI 2008»
11 years 9 months ago
Riemannian Manifold Learning
Recently, manifold learning has been widely exploited in pattern recognition, data analysis, and machine learning. This paper presents a novel framework, called Riemannian manifold...
Tong Lin, Hongbin Zha
ICML
2004
IEEE
12 years 3 months ago
Learning a kernel matrix for nonlinear dimensionality reduction
We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into ...
Kilian Q. Weinberger, Fei Sha, Lawrence K. Saul
books