Sciweavers

Share
489 search results - page 1 / 98
» The Bayesian Structural EM Algorithm
Sort
View
UAI
1998
9 years 3 months ago
The Bayesian Structural EM Algorithm
In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a beli...
Nir Friedman
IJAR
2010
152views more  IJAR 2010»
9 years 25 days ago
Structural-EM for learning PDG models from incomplete data
Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by...
Jens D. Nielsen, Rafael Rumí, Antonio Salme...
NIPS
1998
9 years 3 months ago
Approximate Learning of Dynamic Models
Inference is a key component in learning probabilistic models from partially observable data. When learning temporal models, each of the many inference phases requires a complete ...
Xavier Boyen, Daphne Koller
JMLR
2010
136views more  JMLR 2010»
8 years 9 months ago
Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes
Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential family using the variational Bayesian expectation maximisation (VB EM) algorith...
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti...
NIPS
2003
9 years 3 months ago
Approximate Expectation Maximization
We discuss the integration of the expectation-maximization (EM) algorithm for maximum likelihood learning of Bayesian networks with belief propagation algorithms for approximate i...
Tom Heskes, Onno Zoeter, Wim Wiegerinck
books