Sciweavers

Share
13 search results - page 1 / 3
» Tracking value function dynamics to improve reinforcement le...
Sort
View
ICML
2007
IEEE
10 years 7 months ago
Tracking value function dynamics to improve reinforcement learning with piecewise linear function approximation
Reinforcement learning algorithms can become unstable when combined with linear function approximation. Algorithms that minimize the mean-square Bellman error are guaranteed to co...
Chee Wee Phua, Robert Fitch
ICML
2006
IEEE
10 years 1 months ago
Automatic basis function construction for approximate dynamic programming and reinforcement learning
We address the problem of automatically constructing basis functions for linear approximation of the value function of a Markov Decision Process (MDP). Our work builds on results ...
Philipp W. Keller, Shie Mannor, Doina Precup
ATAL
2005
Springer
10 years 18 days ago
Improving reinforcement learning function approximators via neuroevolution
Reinforcement learning problems are commonly tackled with temporal difference methods, which use dynamic programming and statistical sampling to estimate the long-term value of ta...
Shimon Whiteson
UAI
2008
9 years 8 months ago
Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping
We consider the problem of efficiently learning optimal control policies and value functions over large state spaces in an online setting in which estimates must be available afte...
Richard S. Sutton, Csaba Szepesvári, Alborz...
CDC
2010
IEEE
160views Control Systems» more  CDC 2010»
9 years 1 months ago
Adaptive bases for Q-learning
Abstract-- We consider reinforcement learning, and in particular, the Q-learning algorithm in large state and action spaces. In order to cope with the size of the spaces, a functio...
Dotan Di Castro, Shie Mannor
books