Learning visual models of object categories notoriously requires thousands of training examples; this is due to the diversity and richness of object appearance which requires mode...
We present a tutorial survey on some recent approaches to unsupervised machine learning in the context of statistical pattern recognition. In statistical PR, there are two classica...
Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential family using the variational Bayesian expectation maximisation (VB EM) algorith...
Antti Honkela, Tapani Raiko, Mikael Kuusela, Matti...
Abstract. This paper studies a Bayesian framework for density modeling with mixture of exponential family distributions. Variational Bayesian Dirichlet-Multinomial allocation (VBDM...
Shipeng Yu, Kai Yu, Volker Tresp, Hans-Peter Krieg...
The variational Bayesian nonlinear blind source separation method introduced by Lappalainen and Honkela in 2000 is initialised with linear principal component analysis (PCA). Becau...
Antti Honkela, Stefan Harmeling, Leo Lundqvist, Ha...