Sciweavers

Share
AIIDE
2008
8 years 11 months ago
Combining Model-Based Meta-Reasoning and Reinforcement Learning for Adapting Game-Playing Agents
Human experience with interactive games will be enhanced if the software agents that play the game learn from their failures. Techniques such as reinforcement learning provide one...
Patrick Ulam, Joshua Jones, Ashok K. Goel
SAC
2005
ACM
9 years 2 months ago
Reinforcement learning agents with primary knowledge designed by analytic hierarchy process
This paper presents a novel model of reinforcement learning agents. A feature of our learning agent model is to integrate analytic hierarchy process (AHP) into a standard reinforc...
Kengo Katayama, Takahiro Koshiishi, Hiroyuki Narih...
IJCNN
2008
IEEE
9 years 3 months ago
Learning to select relevant perspective in a dynamic environment
— When an agent observes its environment, there are two important characteristics of the perceived information. One is the relevance of information and the other is redundancy. T...
Zhihui Luo, David A. Bell, Barry McCollum, Qingxia...
ICML
2003
IEEE
9 years 10 months ago
Principled Methods for Advising Reinforcement Learning Agents
An important issue in reinforcement learning is how to incorporate expert knowledge in a principled manner, especially as we scale up to real-world tasks. In this paper, we presen...
Eric Wiewiora, Garrison W. Cottrell, Charles Elkan
ICML
2006
IEEE
9 years 10 months ago
An intrinsic reward mechanism for efficient exploration
How should a reinforcement learning agent act if its sole purpose is to efficiently learn an optimal policy for later use? In other words, how should it explore, to be able to exp...
Özgür Simsek, Andrew G. Barto
books