Sciweavers

396 search results - page 29 / 80
» Lossy Reduction for Very High Dimensional Data
Sort
View
ICCV
2007
IEEE
16 years 1 months ago
Discriminant Embedding for Local Image Descriptors
Invariant feature descriptors such as SIFT and GLOH have been demonstrated to be very robust for image matching and visual recognition. However, such descriptors are generally par...
Gang Hua, Matthew Brown, Simon A. J. Winder
IJON
2006
85views more  IJON 2006»
14 years 11 months ago
From outliers to prototypes: Ordering data
We propose simple and fast methods based on nearest neighbors that order objects from high-dimensional data sets from typical points to untypical points. On the one hand, we show ...
Stefan Harmeling, Guido Dornhege, David M. J. Tax,...

Publication
170views
14 years 11 months ago
Covariance Regularization for Supervised Learning in High Dimensions
This paper studies the effect of covariance regularization for classific ation of high-dimensional data. This is done by fitting a mixture of Gaussians with a regularized covaria...
Daniel L. Elliott, Charles W. Anderson, Michael Ki...
ICCS
2005
Springer
15 years 5 months ago
Dimension Reduction for Clustering Time Series Using Global Characteristics
Existing methods for time series clustering rely on the actual data values can become impractical since the methods do not easily handle dataset with high dimensionality, missing v...
Xiaozhe Wang, Kate A. Smith, Rob J. Hyndman
AAAI
2008
15 years 2 months ago
AnalogySpace: Reducing the Dimensionality of Common Sense Knowledge
We are interested in the problem of reasoning over very large common sense knowledge bases. When such a knowledge base contains noisy and subjective data, it is important to have ...
Robert Speer, Catherine Havasi, Henry Lieberman