Sciweavers

ICFP
2010
ACM

Regular, shape-polymorphic, parallel arrays in Haskell

13 years 5 months ago
Regular, shape-polymorphic, parallel arrays in Haskell
We present a novel approach to regular, multi-dimensional arrays in Haskell. The main highlights of our approach are that it (1) is purely functional, (2) supports reuse through shape polymorphism, (3) avoids unnecessary intermediate structures rather than relying on subsequent loop fusion, and (4) supports transparent parallelisation. We show how to embed two forms of shape polymorphism into Haskell's type system using type classes and type families. In particular, we discuss the generalisation of regular array transformations to arrays of higher rank, and introduce a type-safe specification of array slices. We discuss the runtime performance of our approach for three standard array algorithms. We achieve absolute performance comparable to handwritten C code. At the same time, our implementation scales well up to 8 processor cores. Categories and Subject Descriptors D.3.3 [Programming Languages]: Language Constructs and Features--Concurrent programuctures; Polymorphism; Abstract...
Gabriele Keller, Manuel M. T. Chakravarty, Roman L
Added 09 Nov 2010
Updated 09 Nov 2010
Type Conference
Year 2010
Where ICFP
Authors Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones, Ben Lippmeier
Comments (0)