Sciweavers

AMC
2006

A general probabilistic model of the PCR process

13 years 4 months ago
A general probabilistic model of the PCR process
Earlier work by Saha et al. rigorously derived a general probabilistic model for the PCR process that includes as a special case the Velikanov-Kapral model where all nucleotide reaction rates are the same. In this model the probability of binding of deoxy-nucleoside triphosphate (dNTP) molecules with template strands is derived from the microscopic chemical kinetics. A recursive solution for the probability function of binding of dNTPs is developed for a single cycle and is used to calculate expected yield for a multicycle PCR. The model is able to reproduce important features of the PCR amplification process quantitatively. With a set of favorable reaction conditions, the amplification of the target sequence is fast enough to rapidly outnumber all side products. Furthermore, the final yield of the target sequence in a multicycle PCR run always approaches an asymptotic limit that is less than one. The amplification process itself is highly sensitive to initial concentrations and the r...
Nilanjan Saha, Layne T. Watson, Karen Kafadar, Ale
Added 10 Dec 2010
Updated 10 Dec 2010
Type Journal
Year 2006
Where AMC
Authors Nilanjan Saha, Layne T. Watson, Karen Kafadar, Alexey Onufriev, Naren Ramakrishnan, Cecilia Vasquez-Robinet, Jonathan I. Watkinson
Comments (0)