Sciweavers

TPDS
2008

Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization

13 years 4 months ago
Solving Systems of Linear Equations on the CELL Processor Using Cholesky Factorization
: The STI CELL processor introduces pioneering solutions in processor architecture. At the same time it presents new challenges for the development of numerical algorithms. One is effective exploitation of the differential between the speed of single and double precision arithmetic; the other is efficient parallelization between the short vector SIMD cores. In this work, the first challenge is addressed by utilizing a mixed-precision algorithm for the solution of a dense symmetric positive definite system of linear equations, which delivers double precision accuracy, while performing the bulk of the work in single precision. The second challenge is approached by introducing much finer granularity of parallelization than has been used for other architectures and using a lightweight decentralized synchronization. The implementation of the computationally intensive sections gets within 90 percent of peak floating point performance, while the implementation of the memory intensive sections...
Jakub Kurzak, Alfredo Buttari, Jack Dongarra
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2008
Where TPDS
Authors Jakub Kurzak, Alfredo Buttari, Jack Dongarra
Comments (0)