Sciweavers

Share
CEC
2007
IEEE

On the analysis of average time complexity of estimation of distribution algorithms

11 years 4 months ago
On the analysis of average time complexity of estimation of distribution algorithms
— Estimation of Distribution Algorithm (EDA) is a well-known stochastic optimization technique. The average time complexity is a crucial criterion that measures the performance of the stochastic algorithms. In the past few years, various kinds of EDAs have been proposed, but the related theoretical study on the time complexity of these algorithms is relatively few. This paper analyzed the time complexity of two early versions of EDA, the Univariate Marginal Distribution Algorithm (UMDA) and the Incremental UMDA (IUMDA). We generalize the concept of convergence to convergence time, and manage to estimate the upper bound of the mean First Hitting Times (FHTs) of UMDA (IUMDA) on a well-known pseudo-modular function, which is frequently studied in the field of genetic algorithms. Our analysis shows that UMDA (IUMDA) has O(n) behaviors on the pseudo-modular function. In addition, we analyze the mean FHT of IUMDA on a hard problem. Our result shows that IUMDA may spend exponential generat...
Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao
Added 02 Jun 2010
Updated 02 Jun 2010
Type Conference
Year 2007
Where CEC
Authors Tianshi Chen, Ke Tang, Guoliang Chen, Xin Yao
Comments (0)
books