Sciweavers

Share
SAC
2008
ACM

Bayesian inference for a discretely observed stochastic kinetic model

8 years 9 months ago
Bayesian inference for a discretely observed stochastic kinetic model
The ability to infer parameters of gene regulatory networks is emerging as a key problem in systems biology. The biochemical data are intrinsically stochastic and tend to be observed by means of discrete-time sampling systems, which are often limited in their completeness. In this paper we explore how to make Bayesian inference for the kinetic rate constants of regulatory networks, using the stochastic kinetic Lotka-Volterra system as a model. This simple model describes behaviour typical of many biochemical networks which exhibit auto-regulatory behaviour. Various MCMC algorithms are described and their performance evaluated in several data-poor scenarios. An algorithm based on an approximating process is shown to be particularly efficient. Keywords Biochemical networks
Richard J. Boys, Darren J. Wilkinson, Thomas B. L.
Added 28 Dec 2010
Updated 28 Dec 2010
Type Journal
Year 2008
Where SAC
Authors Richard J. Boys, Darren J. Wilkinson, Thomas B. L. Kirkwood
Comments (0)
books