Chaotic Invariants for Human Action Recognition

9 years 5 months ago
Chaotic Invariants for Human Action Recognition
The paper introduces an action recognition framework that uses concepts from the theory of chaotic systems to model and analyze nonlinear dynamics of human actions. Trajectories of reference joints are used as the representation of the non-linear dynamical system that is generating the action. Each trajectory is then used to reconstruct a phase space of appropriate dimension by employing a delay-embedding scheme. The properties of the reconstructed phase space are captured in terms of dynamical and metric invariants that include Lyapunov exponent, correlation integral and correlation dimension. Finally, the action is represented by a feature vector which is a combination of these invariants over all the reference trajectories. Our contributions in this paper include :1) investigation of the appropriateness of theory of chaotic systems for human action modelling and recognition, 2) a new set of features to characterize nonlinear dynamics of human actions, 3) experimental validation of ...
Saad Ali, Arslan Basharat, Mubarak Shah
Added 14 Oct 2009
Updated 30 Oct 2009
Type Conference
Year 2007
Where ICCV
Authors Saad Ali, Arslan Basharat, Mubarak Shah
Comments (0)