Sciweavers

IWVF
2001
Springer

Computational Surface Flattening: A Voxel-Based Approach

13 years 9 months ago
Computational Surface Flattening: A Voxel-Based Approach
ÐA voxel-based method for flattening a surface in 3D space into 2D while best preserving distances is presented. Triangulation or polyhedral approximation of the voxel data are not required. The problem is divided into two main parts: Voxel-based calculation of the minimal geodesic distances between points on the surface and finding a configuration of points in 2D that has Euclidean distances as close as possible to these distances. The method suggested combines an efficient voxel-based hybrid distance estimation method, that takes the continuity of the underlying surface into account, with classical multidimensional scaling (MDS) for finding the 2D point configuration. The proposed algorithm is efficient, simple, and can be applied to surfaces that are not functions. Experimental results are shown.
Ruth Grossmann, Nahum Kiryati, Ron Kimmel
Added 30 Jul 2010
Updated 30 Jul 2010
Type Conference
Year 2001
Where IWVF
Authors Ruth Grossmann, Nahum Kiryati, Ron Kimmel
Comments (0)