Sciweavers

Share
ALGOSENSORS
2004
Springer

On a Conjecture Related to Geometric Routing

9 years 3 months ago
On a Conjecture Related to Geometric Routing
We conjecture that any planar 3-connected graph can be embedded in the plane in such a way that for any nodes s and t, there is a path from s to t such that the Euclidean distance to t decreases monotonically along the path. A consequence of this conjecture would be that in any ad hoc network containing such a graph as a subgraph, 2-dimensional virtual coordinates for the nodes can be found for which greedy geographic routing is guaranteed to work. We discuss this conjecture and its equivalent forms. We show a weaker result, namely that for any network containing a 3-connected planar subgraph, 3-dimensional virtual coordinates always exist enabling a form of greedy routing inspired by the simplex method; we provide experimental evidence that this scheme is quite effective in practice. We also propose a rigorous form of face routing based on the Koebe-Andre’ev-Thurston theorem. Finally, we show a result delimiting the applicability of our approach: any 3-connected K3,3-free graph has...
Christos H. Papadimitriou, David Ratajczak
Added 30 Jun 2010
Updated 30 Jun 2010
Type Conference
Year 2004
Where ALGOSENSORS
Authors Christos H. Papadimitriou, David Ratajczak
Comments (0)
books