Sciweavers

Share
SOFTCO
2004
Springer

Designing Neural Networks Using Gene Expression Programming

11 years 10 months ago
Designing Neural Networks Using Gene Expression Programming
Abstract. An artificial neural network with all its elements is a rather complex structure, not easily constructed and/or trained to perform a particular task. Consequently, several researchers used genetic algorithms to evolve partial aspects of neural networks, such as the weights, the thresholds, and the network architecture. Indeed, over the last decade many systems have been developed that perform total network induction. In this work it is shown how the chromosomes of Gene Expression Programming can be modified so that a complete neural network, including the architecture, the weights and thresholds, could be totally encoded in a linear chromosome. It is also shown how this chromosomal organization allows the training/adaptation of the network using the evolutionary mechanisms of selection and modification, thus providing an approach to the automatic design of neural networks. The workings and performance of this new algorithm are tested on the 6-multiplexer and on the classical ...
Cândida Ferreira
Added 02 Jul 2010
Updated 02 Jul 2010
Type Conference
Year 2004
Where SOFTCO
Authors Cândida Ferreira
Comments (0)
books