Multiresolution models for object detection

7 years 10 months ago
Multiresolution models for object detection
Abstract. Most current approaches to recognition aim to be scaleinvariant. However, the cues available for recognizing a 300 pixel tall object are qualitatively different from those for recognizing a 3 pixel tall object. We argue that for sensors with finite resolution, one should instead use scale-variant, or multiresolution representations that adapt in complexity to the size of a putative detection window. We describe a multiresolution model that acts as a deformable part-based model when scoring large instances and a rigid template with scoring small instances. We also examine the interplay of resolution and context, and demonstrate that context is most helpful for detecting low-resolution instances when local models are limited in discriminative power. We demonstrate impressive results on the Caltech Pedestrian benchmark, which contains object instances at a wide range of scales. Whereas recent state-of-theart methods demonstrate missed detection rates of 86%-37% at 1 falseposit...
Added 02 Jul 2010
Updated 02 Jul 2010
Type Conference
Year 2010
Where ECCV
Comments (0)