Sciweavers

ISCA
2005
IEEE

Near-Optimal Worst-Case Throughput Routing for Two-Dimensional Mesh Networks

13 years 10 months ago
Near-Optimal Worst-Case Throughput Routing for Two-Dimensional Mesh Networks
Minimizing latency and maximizing throughput are important goals in the design of routing algorithms for interconnection networks. Ideally, we would like a routing algorithm to (a) route packets using the minimal number of hops to reduce latency and preserve communication locality, (b) deliver good worst-case and average-case throughput and (c) enable low-complexity (and hence, low latency) router implementation. In this paper, we focus on routing algorithms for an important class of interconnection networks: two dimensional (2D) mesh networks. Existing routing algorithms for mesh networks fail to satisfy one or more of design goals mentioned above. Variously, the routing algorithms suffer from poor worst case throughput (ROMM [13], DOR [23]), poor latency due to increased packet hops (VALIANT [31]) or increased latency due to hardware complexity (minimaladaptive [7, 30]). The major contribution of this paper is the design of an oblivious routing algorithm—O1TURN—with provable ne...
Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique,
Added 25 Jun 2010
Updated 25 Jun 2010
Type Conference
Year 2005
Where ISCA
Authors Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, Mithuna Thottethodi
Comments (0)