Triangles in Euclidean Arrangements

10 years 5 months ago
Triangles in Euclidean Arrangements
The number of triangles in arrangements of lines and pseudolines has been object of some research. Most results, however, concern arrangements in the projective plane. In this article we add results for the number of triangles in Euclidean arrangements of pseudolines. Though the change in the embedding space from projective to Euclidean may seem small there are interesting changes both in the results and in the techniques required for the proofs. In 1926 Levi proved that a nontrivial arrangement -simple or not- of n pseudolines in the projective plane contains at least n triangles. To show the corresponding result for the Euclidean plane, namely, that a simple arrangement of n pseudolines contains at least n ?2 triangles, we had to nd a completely di erent proof. On the other hand a non-simple arrangements of n pseudolines in the Euclidean plane can have as few as 2n=3 triangles and this bound is best possible. We also discuss the maximal possible number of triangles and some extension...
Stefan Felsner, Klaus Kriegel
Added 06 Aug 2010
Updated 06 Aug 2010
Type Conference
Year 1998
Where WG
Authors Stefan Felsner, Klaus Kriegel
Comments (0)