Sciweavers

Share
8 search results - page 1 / 2
» Reinforcement Learning with Soft State Aggregation
Sort
View
NIPS
1994
8 years 10 months ago
Reinforcement Learning with Soft State Aggregation
It is widely accepted that the use of more compact representations than lookup tables is crucial to scaling reinforcement learning (RL) algorithms to real-world problems. Unfortun...
Satinder P. Singh, Tommi Jaakkola, Michael I. Jord...
COLT
2008
Springer
8 years 11 months ago
Adaptive Aggregation for Reinforcement Learning with Efficient Exploration: Deterministic Domains
We propose a model-based learning algorithm, the Adaptive Aggregation Algorithm (AAA), that aims to solve the online, continuous state space reinforcement learning problem in a de...
Andrey Bernstein, Nahum Shimkin
AAAI
1998
8 years 10 months ago
Tree Based Discretization for Continuous State Space Reinforcement Learning
Reinforcement learning is an effective technique for learning action policies in discrete stochastic environments, but its efficiency can decay exponentially with the size of the ...
William T. B. Uther, Manuela M. Veloso
FLAIRS
2004
8 years 10 months ago
State Space Reduction For Hierarchical Reinforcement Learning
er provides new techniques for abstracting the state space of a Markov Decision Process (MDP). These techniques extend one of the recent minimization models, known as -reduction, ...
Mehran Asadi, Manfred Huber
ICRA
2010
IEEE
143views Robotics» more  ICRA 2010»
8 years 7 months ago
Apprenticeship learning via soft local homomorphisms
Abstract— We consider the problem of apprenticeship learning when the expert’s demonstration covers only a small part of a large state space. Inverse Reinforcement Learning (IR...
Abdeslam Boularias, Brahim Chaib-draa
books