Join Our Newsletter

Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Pinyin
i2Cantonese
i2Cangjie
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ESA

2008

Springer

2008

Springer

We consider two generalizations of the edge coloring problem in bipartite graphs. The first problem we consider is the weighted bipartite edge coloring problem where we are given an edge-weighted bipartite graph G = (V, E) with weights w : E [0, 1]. The task is to find a proper weighted coloring of the edges with as few colors as possible. An edge coloring of the weighted graph is called a proper weighted coloring if the sum of the weights of the edges incident to a vertex of any color is at most one. We give a polynomial time algorithm for the weighted bipartite edge coloring problem which returns a proper weighted coloring using at most 2.25n colors where n is the maximum total weight incident at any vertex. This improves on the previous best bound of Correa and Goemans [5] which returned a coloring using 2.557n + o(n) colors. The second problem we consider is the Balanced Decomposition of Bipartite graphs problem where we are given a bipartite graph G = (V, E) and 1, . . . , k (0,...

Related Content

Added |
19 Oct 2010 |

Updated |
19 Oct 2010 |

Type |
Conference |

Year |
2008 |

Where |
ESA |

Authors |
Uriel Feige, Mohit Singh |

Comments (0)