Robust differential asynchronous nanoelectronic circuits

10 years 11 months ago
Robust differential asynchronous nanoelectronic circuits
Abstract — Nanoelectronic design faces unprecedented reliability challenges and must achieve noise immunity and delay insensitiveness in the presence of prevalent defects and significant parametric variations. Asynchronous circuits have the great potential to achieve delay insensitive, high performance and low power nanoelectronic design, while the existing asynchronous circuits do not guarantee logic and timing correctness in the presence of glitches. In this paper, I propose robust differential asynchronous (RDA) circuits, which combine asynchronous circuits for delay insensitiveness, differential logic for redundancy, and error detection codes for resilience. Theoretical analysis and SPICE simulation based on 22nm CMOS Predictive Technology Models show that the proposed RDA circuits achieve much enhanced reliability in (1) logic correctness at the event of a single bit soft error or common multiple bit soft errors by differential logic and error detection codes, and (2) timing co...
Bao Liu
Added 19 May 2010
Updated 19 May 2010
Type Conference
Year 2009
Authors Bao Liu
Comments (0)