Sciweavers

NOCS
2008
IEEE

Adding Slow-Silent Virtual Channels for Low-Power On-Chip Networks

13 years 11 months ago
Adding Slow-Silent Virtual Channels for Low-Power On-Chip Networks
In this paper, we introduce the use of slow-silent virtual channels to reduce the switching power of on-chip networks while keeping the leakage power small. Adding virtual channels to a network improves the throughput until each link bandwidth is saturated. This enables us to reduce the switching power of on-chip networks by decreasing their operating frequency and supply voltage. However, adding virtual channels increases the leakage power of routers as well as the area due to their large buffers; so the runtime power gating is applied to individual virtual channels to eliminate this problem. We evaluate the performance of slow-silent virtual channels by using real application traces, and their power consumption (switching and leakage) is evaluated based on the detailed design of a virtual-channel router placed and routed with a 90nm technology. These evaluation results show that a network with three or four virtual channels achieves the best energy efficiency in a uniform traffic....
Hiroki Matsutani, Michihiro Koibuchi, Daihan Wang,
Added 01 Jun 2010
Updated 01 Jun 2010
Type Conference
Year 2008
Where NOCS
Authors Hiroki Matsutani, Michihiro Koibuchi, Daihan Wang, Hideharu Amano
Comments (0)