Learning Utility Surfaces for Movement Selection

12 years 7 months ago
Learning Utility Surfaces for Movement Selection
— Humanoid robots are highly redundant systems with respect to the tasks they are asked to perform. This redundancy manifests itself in the number of degrees of freedom of the robot exceeding the dimensionality of the task. Traditionally this redundancy has been utilised through optimal control in the null-space. Some cost function is defined that encodes secondary movement goals and movements are optimised with respect to this function, subject to fulfilment of task constraints. Until now design of cost functions has been carried out on an ad-hoc basis and has required time-consuming hand-tuning to ensure that the desired (or acceptable) behaviour is realised. Here we present a novel approach for designing cost functions for optimal control in the null-space by exploiting recent advances in statistical machine learning. The behaviour of a (kinematically or dynamically controlled) mechanical system performing some task is observed and separated into task- and null-space components....
Matthew Howard, Michael Gienger, Christian Goerick
Added 12 Jun 2010
Updated 12 Jun 2010
Type Conference
Year 2006
Authors Matthew Howard, Michael Gienger, Christian Goerick, Sethu Vijayakumar
Comments (0)