Almost Optimal Bounds for Direct Product Threshold Theorem

14 years 3 months ago
Almost Optimal Bounds for Direct Product Threshold Theorem
Abstract. We consider weakly-verifiable puzzles which are challengeresponse puzzles such that the responder may not be able to verify for itself whether it answered the challenge correctly. We consider k-wise direct product of such puzzles, where now the responder has to solve k puzzles chosen independently in parallel. Canetti et al have earlier shown that such direct product puzzles have a hardness which rises exponentially with k. In the threshold case addressed in Impagliazzo et al, the responder is required to answer correctly a fraction of challenges above a threshold. The bound on hardness of this threshold parallel version was shown to be similar to Chernoff bound, but the constants in the exponent are rather weak. Namely, Impagliazzo et al show that for a puzzle for which probability of failure is δ, the probability of failing on less than (1− γ)δk out of k puzzles, for any parallel strategy, is at most e−γ2 δk/40 . In this paper, we develop new techniques to bound ...
Charanjit S. Jutla
Added 17 Mar 2010
Updated 17 Mar 2010
Type Conference
Year 2010
Where TCC
Authors Charanjit S. Jutla
Comments (0)