Location-based services have attracted the attention of important research in the field of mobile computing. Specifically, different mechanisms have been proposed to process location-dependent queries. In the above mentioned context, it is usually assumed that the location data are expressed at a fine geographic precision. However, a different granularity may be more appropriate in certain situations. Thus, a location resolution higher than required may even be inconvenient or not understandable by the user (for example, if the user expects a city name as an answer and instead the system provides the latitude/longitude coordinates). Moreover, if the locations presented to the user need to be refreshed automatically as the objects move, it is obvious that maintaining up-to-date GPS-like geographic coordinates would be more expensive in terms of processing and communication. Unfortunately, the existing approaches assume queries whose locations are always given with maximum precision ...