Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

SODA

2010

ACM

2010

ACM

We consider robust network design problems where the set of feasible demands may be given by an arbitrary polytope or convex body more generally. This model, introduced by BenAmeur and Kerivin [2], generalizes the well studied virtual private network (VPN) problem. Most research in this area has focused on finding constant factor approximations for specific polytope of demands, such as the class of hose matrices used in the definition of VPN. As pointed out in [4], however, the general problem was only known to be APX-hard (based on a reduction from the Steiner tree problem). We show that the general robust design is hard to approximate to within logarithmic factors. We establish this by showing a general reduction of buy-at-bulk network design to the robust network design problem. In the second part of the paper, we introduce a natural generalization of the VPN problem. In this model, the set of feasible demands is determined by a tree with edge capacities; a demand matrix is feasibl...

Related Content

Added |
01 Mar 2010 |

Updated |
02 Mar 2010 |

Type |
Conference |

Year |
2010 |

Where |
SODA |

Authors |
Neil Olver, F. Bruce Shepherd |

Comments (0)