Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ISAAC

2000

Springer

2000

Springer

It has been a challenging open problem whether there is a polynomial time approximation algorithm for the Vertex Cover problem whose approximation ratio is bounded by a constant less than 2. In this paper, we study the Vertex Cover problem on graphs with perfect matching (shortly, VC-PM). We show that if the VC-PM problem has a polynomial time approximation algorithm with approximation ratio bounded by a constant less than 2, then so does the Vertex Cover problem on general graphs. Approximation algorithms for VC-PM are developed, which induce improvements over previously known algorithms on sparse graphs.

Related Content

Added |
25 Aug 2010 |

Updated |
25 Aug 2010 |

Type |
Conference |

Year |
2000 |

Where |
ISAAC |

Authors |
Jianer Chen, Iyad A. Kanj |

Comments (0)