Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

APPROX

2006

Springer

2006

Springer

Abstract. In the k-Minimum Common Integer Partition Problem, abbreviated k-MCIP, we are given k multisets X1, . . . , Xk of positive integers, and the goal is to find an integer multiset T of minimal size for which for each i, we can partition each of the integers in Xi so that the disjoint union (multiset union) of their partitions equals T. This problem has many applications to computational molecular biology, including ortholog assignment and fingerprint assembly. We prove better approximation ratios for k-MCIP by looking at what we call the redundancy of X1, . . . , Xk, which is a quantity capturing the frequency of integers across the different Xi. Namely, we show .614kapproximability, improving upon the previous best known (k - 1/3)approximability for this problem. A key feature of our algorithm is that it can be implemented in almost linear time.

Related Content

Added |
20 Aug 2010 |

Updated |
20 Aug 2010 |

Type |
Conference |

Year |
2006 |

Where |
APPROX |

Authors |
David P. Woodruff |

Comments (0)