Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ALGORITHMICA

2010

2010

We consider the following generalization of bin packing. Each item is associated with a size bounded by 1, as well as a rejection cost, that an algorithm must pay if it chooses not to pack this item. The cost of an algorithm is the sum of all rejection costs of rejected items plus the number of unit sized bins used for packing all other items. We rst study the oine version of the problem and design an APTAS for it. This is a non-trivial generalization of the APTAS given by Fernandez de la Vega and Lueker for the standard bin packing problem. We further give an approximation algorithm of absolute approximation ratio 3 2 , this value is best possible unless P = NP. Finally, we study an online version of the problem. For the bounded space variant, where only a constant number of bins can be open simultaneously, we design a sequence an algorithms whose competitive ratios tend to the best possible asymptotic competitive ratio. We show that our algorithms have the same asymptotic competitive...

Added |
08 Dec 2010 |

Updated |
08 Dec 2010 |

Type |
Journal |

Year |
2010 |

Where |
ALGORITHMICA |

Authors |
Leah Epstein |

Comments (0)