Sciweavers

190
Voted
COMBINATORICA
2011

On the chromatic number of random geometric graphs

13 years 10 months ago
On the chromatic number of random geometric graphs
Given independent random points X1, . . . , Xn ∈ Rd with common probability distribution ν, and a positive distance r = r(n) > 0, we construct a random geometric graph Gn with vertex set {1, . . . , n} where distinct i and j are adjacent when Xi − Xj ≤ r. Here . may be any norm on Rd, and ν may be any probability distribution on Rd with a bounded density function. We consider the chromatic number χ(Gn) of Gn and its relation to the clique number ω(Gn) as n → ∞. Both McDiarmid [11] and Penrose [15] considered the range of r when r (ln n n )1/d and the range when r (ln n n )1/d, and their results showed a dramatic difference between these two cases. Here we sharpen and extend the earlier results, and in particular we consider the ‘phase change’ range when r ∼ (t ln n n )1/d with t > 0 a fixed constant. Both [11] and [15] asked for the behaviour of the chromatic number in this range. We determine constants c(t) such that χ(Gn) nrd → c(t) almost surely. Furt...
Colin McDiarmid, Tobias Müller
Added 18 Dec 2011
Updated 18 Dec 2011
Type Journal
Year 2011
Where COMBINATORICA
Authors Colin McDiarmid, Tobias Müller
Comments (0)