Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ECML

2005

Springer

2005

Springer

Although very widely used in unsupervised data mining, most clustering methods are affected by the instability of the resulting clusters w.r.t. the initialization of the algorithm (as e.g. in k-means). Here we show that this problem can be elegantly and efficiently tackled by meta-clustering the clusters produced in several different runs of the algorithm, especially if “soft” clustering algorithms (such as Nonnegative Matrix Factorization) are used both at the object- and the meta-level. The essential difference w.r.t. other metaclustering approaches consists in the fact that our algorithm detects frequently occurring sub-clusters (rather than complete clusters) in the various runs, which allows it to outperform existing algorithms. Additionally, we show how to perform two-way meta-clustering, i.e. take both object and sample dimensions of clusters simultaneously into account, a feature which is essential e.g. for biclustering gene expression data, but has not been considered befo...

Related Content

Added |
14 Oct 2010 |

Updated |
14 Oct 2010 |

Type |
Conference |

Year |
2005 |

Where |
ECML |

Authors |
Liviu Badea |

Comments (0)