Coarse-to-Fine Inference and Learning for First-Order Probabilistic Models

11 years 9 months ago
Coarse-to-Fine Inference and Learning for First-Order Probabilistic Models
Coarse-to-fine approaches use sequences of increasingly fine approximations to control the complexity of inference and learning. These techniques are often used in NLP and vision applications. However, no coarse-to-fine inference or learning methods have been developed for general first-order probabilistic domains, where the potential gains are even higher. We present our Coarse-to-Fine Probabilistic Inference (CFPI) framework for general coarse-to-fine inference for first-order probabilistic models, which leverages a given or induced type hierarchy over objects in the domain. Starting by considering the inference problem at the coarsest type level, our approach performs inference at successively finer grains, pruning highand low-probability atoms before refining. CFPI can be applied with any probabilistic inference method and can be used in both propositional and relational domains. CFPI provides theoretical guarantees on the errors incurred, and these guarantees can be tight...
Chloe Kiddon, Pedro Domingos
Added 12 Dec 2011
Updated 12 Dec 2011
Type Journal
Year 2011
Where AAAI
Authors Chloe Kiddon, Pedro Domingos
Comments (0)