Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

LICS

2000

IEEE

2000

IEEE

We prove that several problems concerning congruences on algebras are complete for nondeterministic log-space. These problems are: determining the congruence on a given algebra generated by a set of pairs, and determining whether a given algebra is simple or subdirectly irreducible. We also consider the problem of determining the smallest fully invariant congruence on a given algebra containing a given set of pairs. We prove that this problem is complete for nondeterministic polynomial time. Key words and phrases. congruence, simple algebra, nondeterministic log-space, graph accessibility One of the fundamental constructions in algebra is the formation of quotient structures. Every quotient of an algebra A is a homomorphic image of A, and conversely, every homomorphic image is isomorphic to a quotient of A. For familiar sorts of algebraic structures such as groups or rings, a quotient is often determined by a special subset, i.e., a normal subgroup or an ideal. But for an arbitrary alg...

Related Content

Added |
31 Jul 2010 |

Updated |
31 Jul 2010 |

Type |
Conference |

Year |
2000 |

Where |
LICS |

Authors |
Clifford Bergman, Giora Slutzki |

Comments (0)