Abstract Weproposeacomputationalmodelofcontourintegration for visual saliency. The model uses biologically plausible devices to simulate how the representations of elements aligned collinearly along a contour in an image are enhanced. Our model adds such devices as a dopamine-like fast plasticity, local GABAergic inhibition and multi-scale processing of images. The fast plasticity addresses the problem of how neurons in visual cortex seem to be able to influence neurons they are not directly connected to, for instance, as observed in contour closure effect. Local GABAergic inhibition is used to control gain in the system without using global mechanisms which may be non-plausible given the limited reach of axonal arbors in visual cortex. The model is then used to explore not only its validity in real and artificial images, but to discover some of the mechanisms involved in processing of complex visual features such as junctions and end-stops as well as contours. We present evidence for ...
T. Nathan Mundhenk, Laurent Itti