Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

COMPGEOM

1997

ACM

1997

ACM

Abstract: We propose an e cient method that determines the sign of a multivariate polynomial expression with integer coe cients. This is a central operation on which the robustness of many geometric algorithms depends. The method relies on modular computations, for which comparisons are usually thought to require multiprecision. Our novel technique of recursive relaxation of the moduli enables us to carry out sign determination and comparisons by using only oating point computations in single precision. The method is highly parallelizable and is the fastest of all known multiprecision methods from a complexity point of view. We show how to compute a few geometric predicates that reduce to matrix determinants. We discuss implementation e ciency, which can be enhanced by good arithmetic lters. We substantiate these claims by experimental results and comparisons to other existing approaches. This method can be used to generate robust and e cient implementations of geometric algorithms, in...

Related Content

Added |
06 Aug 2010 |

Updated |
06 Aug 2010 |

Type |
Conference |

Year |
1997 |

Where |
COMPGEOM |

Authors |
Hervé Brönnimann, Ioannis Z. Emiris, Victor Y. Pan, Sylvain Pion |

Comments (0)