Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

FOCS

2002

IEEE

2002

IEEE

We consider the classical vertex cover and set cover problems with the addition of hard capacity constraints. This means that a set (vertex) can only cover a limited number of its elements (adjacent edges) and the number of available copies of each set (vertex) is bounded. This is a natural generalization of the classical problems that also captures resource limitations in practical scenarios. We obtain the following results. For the unweighted vertex cover problem with hard capacities we give a ¢ approximation algorithm which is based on randomized rounding with alterations. We prove that the weighted version is at least as hard as the set cover problem. This is an interesting separation between the approximability of weighted and unweighted versions of a “natural” graph problem. A logarithmic approximation factor for both the set cover and the weighted vertex cover problem with hard capacities follows from the work of Wolsey [23] on submodular set cover. We provide in this pape...

Related Content

Added |
14 Jul 2010 |

Updated |
14 Jul 2010 |

Type |
Conference |

Year |
2002 |

Where |
FOCS |

Authors |
Julia Chuzhoy, Joseph Naor |

Comments (0)