Cross-View Action Recognition via View Knowledge Transfer

13 years 2 months ago
Cross-View Action Recognition via View Knowledge Transfer
In this paper, we present a novel approach to recognizing human actions from different views by view knowledge transfer. An action is originally modelled as a bag of visual-words (BoVW), which is sensitive to view changes. We argue that, as opposed to visual words, there exist some higher level features which can be shared across views and enable the connection of action models for different views. To discover these features, we use a bipartite graph to model two view-dependent vocabularies, then apply bipartite graph partitioning to co-cluster two vocabularies into visual-word clusters called bilingual-words (i.e., high-level features), which can bridge the semantic gap across viewdependent vocabularies. Consequently, we can transfer a BoVW action model into a bag-of-bilingual-words (BoBW) model, which is more discriminative in the presence of view changes. We tested our approach on the IXMAS data set and obtained very promising results. Moreover, to further fuse view knowledge from ...
Jingen Liu
Added 08 Apr 2011
Updated 13 Jul 2011
Type Journal
Year 2011
Where CVPR
Authors Jingen Liu
Comments (0)