Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

35

Voted
NETWORKS

2006

2006

We study capacitated network flow problems with supplies and demands defined on a countably infinite collection of nodes having finite degree. This class of network flow models includes, for example, all infinite horizon deterministic dynamic programs with finite action sets since these are equivalent to the problem of finding a shortest path in an infinite directed network. We derive necessary and sufficient conditions for flows to be extreme points of the set of feasible flows. Under an additional regularity condition met by all such problems with integer data, we show that a feasible solution is an extreme point if and only if it contains neither a cycle nor a doubly-infinite path consisting of free arcs (an arc is free if its flow is strictly between its upper and lower bounds). We employ this result to show that the extreme points can be characterized by specifying a basis. Moreover, we establish the integrality of extreme point flows whenever demands and supplies and arc capacit...

Related Content

Added |
14 Dec 2010 |

Updated |
14 Dec 2010 |

Type |
Journal |

Year |
2006 |

Where |
NETWORKS |

Authors |
H. Edwin Romeijn, Dushyant Sharma, Robert L. Smith |

Comments (0)