Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

PVLDB

2010

2010

In this paper, we analyze the efficiency of Monte Carlo methods for incremental computation of PageRank, personalized PageRank, and similar random walk based methods (with focus on SALSA), on large-scale dynamically evolving social networks. We assume that the graph of friendships is stored in distributed shared memory, as is the case for large social networks such as Twitter. For global PageRank, we assume that the social network has n nodes, and m adversarially chosen edges arrive in a random order. We show that with a reset probability of , the expected total work needed to maintain an accurate estimate (using the Monte Carlo method) of the PageRank of every node at all times is O(n ln m 2 ). This is significantly better than all known bounds for incremental PageRank. For instance, if we naively recompute the PageRanks as each edge arrives, the simple power iteration method needs ( m2 ln(1/(1-)) ) total time and the Monte Carlo method needs O(mn/) total time; both are prohibitively...

Related Content

Added |
20 May 2011 |

Updated |
20 May 2011 |

Type |
Journal |

Year |
2010 |

Where |
PVLDB |

Authors |
Bahman Bahmani, Abdur Chowdhury, Ashish Goel |

Comments (0)