Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

BIRTHDAY

2010

Springer

2010

Springer

The question of whether there is a logic that captures polynomial time was formulated by Yuri Gurevich in 1988. It is still wide open and regarded as one of the main open problems in finite model theory and database theory. Partial results have been obtained for specific classes of structures. In particular, it is known that fixed-point logic with counting captures polynomial time on all classes of graphs with excluded minors. The introductory part of this paper is a short survey of the state-of-the-art in the quest for a logic capturing polynomial time. The main part of the paper is concerned with classes of graphs defined by excluding induced subgraphs. Two of the most fundamental such classes are the class of chordal graphs and the class of line graphs. We prove that capturing polynomial time on either of these classes is as hard as capturing it on the class of all graphs. In particular, this implies that fixed-point logic with counting does not capture polynomial time on these cla...

Related Content

Added |
08 Nov 2010 |

Updated |
08 Nov 2010 |

Type |
Conference |

Year |
2010 |

Where |
BIRTHDAY |

Authors |
Martin Grohe |

Comments (0)