Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

ICFP

1997

ACM

1997

ACM

We show how to implement a calculus with higher-order subtyping and subkinding by replacing uses of implicit subsumption with explicit coercions. To ensure this can be done, a polymorphic function is adjusted to take, as an additional argument, a proof that its type constructor argument has the desired kind. Such a proof is extracted from the derivation of a kinding judgement and may in turn require proof coercions, which are extracted from subkinding judgements. This technique is formalized as a type-directed translation from a calculus of higher-order subtyping to a subtyping-free calculus. This translation generalizes an existing result for second-order subtyping calculi (such as F ). We also discuss two interpretations of subtyping, one that views it as type inclusion and another that views it as the existence of a well-behaved coercion, and we show, by a type-theoretic construction, that our translation is the minimum consequence of shifting from the inclusion interpretation to t...

Related Content

Added |
06 Aug 2010 |

Updated |
06 Aug 2010 |

Type |
Conference |

Year |
1997 |

Where |
ICFP |

Authors |
Karl Crary |

Comments (0)