Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

BCB

2010

2010

Analyzing metabolic pathways by means of their steady states has proven to be accurate and efficient for practical purposes. The models such as elementary flux modes (EFMs) and extreme pathways (EPs) define the boundaries of the metabolic flux cone that is the set of all steady states of a pathway. However, the contributions of the subsets of pathway components in this flux cone so far has not been characterized mathematically. Also, the functional similarities of different component sets (e.g., sets of reactions) has not been expressed as a function of the steady states of metabolic pathways. Here, we aim to fill this gap by proposing a model that quantifies the impact of a set of components on the steady states of a pathway by using EFMs. At a high level, we model the impact of a given component set as the change in the flux cone when all the elements of that set are inhibited. Furthermore, given two sets of components from different pathways, we measure their functional similarity ...

Related Content

Added |
12 May 2011 |

Updated |
12 May 2011 |

Type |
Journal |

Year |
2010 |

Where |
BCB |

Authors |
Ferhat Ay, Tamer Kahveci |

Comments (0)