Sciweavers

IJAR
2010

A geometric view on learning Bayesian network structures

13 years 7 months ago
A geometric view on learning Bayesian network structures
We recall the basic idea of an algebraic approach to learning Bayesian network (BN) structures, namely to represent every BN structure by a certain (uniquely determined) vector, called a standard imset. The main result of the paper is that the set of standard imsets is the set of vertices (= extreme points) of a certain polytope. Motivated by the geometric view, we introduce the concept of the geometric neighborhood for standard imsets, and, consequently, for BN structures. Then we show that it always includes the inclusion neighborhood, which was introduced earlier in connection with the greedy equivalence search (GES) algorithm. The third result is that the global optimum of an affine function over the polytope coincides with the local optimum relative to the geometric neighborhood. To illustrate the new concept by an example, we describe the geometric neighborhood in the case of three variables and show it differs from the inclusion neighborhood. This leads to a simple example of ...
Milan Studený, Jirí Vomlel, Raymond
Added 27 Jan 2011
Updated 27 Jan 2011
Type Journal
Year 2010
Where IJAR
Authors Milan Studený, Jirí Vomlel, Raymond Hemmecke
Comments (0)