Sciweavers

JSYML
2007

The ground axiom

13 years 10 months ago
The ground axiom
Abstract. A new axiom is proposed, the Ground Axiom, asserting that the universe is not a nontrivial set forcing extension of any inner model. The Ground Axiom is first-order expressible, and any model of zfc has a class forcing extension which satisfies it. The Ground Axiom is independent of many well-known set-theoretic assertions including the Generalized Continuum Hypothesis, the assertion v=hod that every set is ordinal definable, and the existence of measurable and supercompact cardinals. The related Bedrock Axiom, asserting that the universe is a set forcing extension of a model satisfying the Ground Axiom, is also first-order expressible, and its negation is consistent.
Jonas Reitz
Added 16 Dec 2010
Updated 16 Dec 2010
Type Journal
Year 2007
Where JSYML
Authors Jonas Reitz
Comments (0)