Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

WALCOM

2010

IEEE

2010

IEEE

Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious coloring with k colors. Extending previous NP-completeness results of the harmonious coloring problem on subclasses of chordal and co-chordal graphs, we prove that the problem remains NP-complete for split undirected path graphs; we also prove that the problem is NP-complete for colinear graphs by showing that split undirected path graphs form a subclass of colinear graphs. Moreover, we provide a polynomial solution for the harmonious coloring problem for the class of split strongly chordal graphs, the interest of which lies on the fact that the problem has been proved to be NP-complete on both split and strongly chordal graphs.

Added |
14 May 2010 |

Updated |
14 May 2010 |

Type |
Conference |

Year |
2010 |

Where |
WALCOM |

Authors |
Kyriaki Ioannidou, Stavros D. Nikolopoulos |

Comments (0)