Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

DM

2008

2008

A weighted graph is one in which every edge e is assigned a nonnegative number w(e), called the weight of e. The weight of a cycle is defined as the sum of the weights of its edges. The weighted degree of a vertex is the sum of the weights of the edges incident with it. In this paper, we prove that: Let G be a k-connected weighted graph with k 2. Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k + 1), if G satisfies the following conditions: (1) The weighted degree sum of any k + 1 pairwise nonadjacent vertices is at least m; (2) In each induced claw and each induced modified claw of G, all edges have the same weight. This generalizes an early result of Enomoto et al. on the existence of heavy cycles in k-connected weighted graphs.

Related Content

Added |
10 Dec 2010 |

Updated |
10 Dec 2010 |

Type |
Journal |

Year |
2008 |

Where |
DM |

Authors |
Bing Chen, Shenggui Zhang, T. C. Edwin Cheng |

Comments (0)