Sciweavers

ICRA
2010
IEEE

Heteroscedastic Gaussian processes for data fusion in large scale terrain modeling

13 years 7 months ago
Heteroscedastic Gaussian processes for data fusion in large scale terrain modeling
This paper presents a novel approach to data fusion for stochastic processes that model spatial data. It addresses the problem of data fusion in the context of large scale terrain modeling for a mobile robot. Building a model of large scale and complex terrain that can adequately handle uncertainty and incompleteness in a statistically sound manner is a very challenging problem. To obtain a comprehensive model of such terrain, typically, multiple sensory modalities as well as multiple data sets are required. This work uses Gaussian processes to model large scale terrain. The model naturally provides a multi-resolution representation of space, incorporates and handles uncertainties appropriately and copes with incompleteness of sensory information. Gaussian process regression techniques are applied to estimate and interpolate (to fill gaps in unknown areas) elevation information across the field. In this work, the GP modeling approach is extended to fuse multiple, multi-modal data sets ...
Shrihari Vasudevan, Fabio T. Ramos, Eric Nettleton
Added 13 Feb 2011
Updated 13 Feb 2011
Type Journal
Year 2010
Where ICRA
Authors Shrihari Vasudevan, Fabio T. Ramos, Eric Nettleton, Hugh F. Durrant-Whyte
Comments (0)