We investigate the impact of a discussion snippet’s overall sentiment on a user’s willingness to read more of a discussion. Using sentiment analysis, we constructed positive, neutral, and negative discussion snippets using the discussion topic and a sample comment from discussions taking place around content on an enterprise social networking site. We computed personalized snippet recommendations for a subset of users and conducted a survey to test how these recommendations were perceived. Our experimental results show that snippets with high sentiments are better discussion “teasers.”
Hyung-il Ahn, Werner Geyer, Casey Dugan, David R.