Sciweavers

TSDM
2000

Identifying Temporal Patterns for Characterization and Prediction of Financial Time Series Events

14 years 1 months ago
Identifying Temporal Patterns for Characterization and Prediction of Financial Time Series Events
The novel Time Series Data Mining (TSDM) framework is applied to analyzing financial time series. The TSDM framework adapts and innovates data mining concepts to analyzing time series data. In particular, it creates a set of methods that reveal hidden temporal patterns that are characteristic and predictive of time series events. This contrasts with other time series analysis techniques, which typically characterize and predict all observations. The TSDM framework and concepts are reviewed, and the applicable TSDM method is discussed. Finally, the TSDM method is applied to time series generated by a basket of financial securities. The results show that statistically significant temporal patterns that are both characteristic and predictive of events in financial time series can be identified.
Richard J. Povinelli
Added 25 Aug 2010
Updated 25 Aug 2010
Type Conference
Year 2000
Where TSDM
Authors Richard J. Povinelli
Comments (0)